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We consider the inviscid stability of the Batchelor (1964) vortex in a compressible flow.
The problem is tackled numerically and also asymptotically, in the limit of large (azimuthal
and streamwise) wavenumbers, together with large Mach numbers. The nature of the solution
passes through different regimes as the Mach number increases, relative to the wavenum-
bers. At very high wavenumbers and Mach numbers, the mode which is present in the
incompressible case ceases to be unstable, whilst a new “centre mode” forms, whose stabil-
ity characteristics are determined primarily by conditions close to the vortex axis. We find
that generally the flow becomes less unstable as the Mach number increases, and that the
regime of instability appears generally confined to disturbances in a direction counter to the
direction of the rotation of the swirl of the vortex.

Throughout the paper comparison is made between our numerical results and results

obtained from the various asymptotic theories.

""This research was supported by the National Aeronautics and Space Administration under NASA Con-
tract Nos. NASI-18605 and NAS1-19480 while the second author was in residence at the Institute for
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1. Introduction

In reeent years there has been a good deal of interest in the stability of incompressible
swirhng vortex type fows. Two important applications to this area of research are the
breakdown of trailing line vortices behind aireraft and to tornadoes: this class of low may
also be applicable to flows inside turbines and compressors. to which the present work
would be particularly relevant.

The carliest works in the area of the stability of swirling vortex flows include those
of Lessen & Paillet (1974) and Lessen. Singh & Paillet (1974). In the former paper the
stability of the Batchelor (1964) vortex was considered. at finite Revnolds numbers up to
150. In the second paper. the inviseid stability of this vortex was studied and revealed an
merease i growth rate at inereasingly large wavenumbers (with disturbances being most
dangerous counter to the direction of the swirl).

Duck & Foster (1980) showed that for a given wavenumber a multiplicity of modes
exists.  Leibovich & Stewartson (1983) and Duck (1986) considered the limit of large
wavenumber for this problem. and showed that a finite (maximum) growth rate was at-
tained. The aforementioned studies suggested an upper and lower neutral value of axial
wavenumber. The upper neutral point for large azimuthal wavenumber was treated by
Stewartson & Capell (1985). who showed that the “ring mode™ structure of the unstable
modes persisted near the upper neutral points. Stewartson & Brown (19835) considered
these upper neutral points for order one azimuthal wavenumbers, and found that in this
case the modes were of centre mode type, similar to those found in a related study on
swirling Poiseuille ow (Stewartson & Brown 1984). The behaviour of the unstable modes,
close to the lower neutral point., at large azimuthal wavenumber., was investigated by Stew-
artson & Leibovich (1987), and determined that in this case the instability disturbances
were centred near the axis of the vortex.

More recently, viscous results have been presented at finite (but large) Reynolds
nuibers by Khorrami et al. (1989) and Khorrami (1991). In this latter paper, it was
shown that additional unstable modes exist, in which viscosity plays a destabilising role.

These modes were analysed by Duck & Khorrami (1991). The inviseid analysis is also




applicable to other vortex profiles, including that of Long (1961), as studied by Foster &
Duck (1982) and Foster & Smith (1989).

Little attention has been paid to the stability of compressible vortex flows of this
type. On the other hand the area of compressible jet flow has been investigated for some
vears now, the work of Michalke (1971, 1984} being relevant here, although restricted
to non-swirling flows. Compressible swirling jet lows have also received some attention.
the work of Coleman (1989) should be mentioned, who studied the superposition of a
Rankine vortex on a top-hat jet velocity field. More recently, Khorrami (1991) studied
a compressible swirling axisymmetric jet, by assuming the incompressible flow of Gortler
(1954) and Loitsyanskii (1953) was applicable in the compressible regime.

In this paper, we take cylindrical polar coordinates, (Ir,6,lr), with the r axis lying
along the axis of the vortex (which is taken to be axisymmetric), and [ is some stream-
wise scale. We also take the flow far from the vortex centre to be directed along the
x direction. The velocity field is written as UYu = UJ(u, v, w), the fluid density is p%_p.
temperature T3 T, first and second coefficients of viscosity s p. pi A respectively, and
pressure p: U*?p. Here superscript asterisk and subscript co denote dimensional and
freestream variables, respectively, and also U} is a velocity scale, defined below in (2.6),
whilst U3, is the freestream velocity. We define the flow Reynolds number

Re = M (1.1)

*
Hoo

and we have a low Mach number given by

Us

M = —_—
(YR*T%)?

: (1.2)

where v is the ratio of specific heats and R* the gas constant. We also define the Prandtl

numnber to be

o= (1.3)

Al

H*

*

where &% 1s the thermal conductivity of the fluid.




The non-dimensional equations of continuity. momentum and energy may then be

written

%—FT.(;}U):O. (1.4
Du , 1 1 . .
Por T -\p— EV AN Aw)] + E{'V.[( A+ 240N . i(1.5)

Dh  Dp
i S 7 "T). .6
Por ~ or T N 0

where /1s the enthalpy of the fluid, and @ is the viscous dissipation. We also assume a

perfect gas.in which case we have

B pT _
])—A,"\[z' (1.7

In the following sections we consider first the basie flow (section 2). which ix shown o
be a proper solution of the above equations of ('()Ilfilmif‘}'. momentumn and encergv. In
section 3 we consider the inviseid linear stability equations. In section 4 we present a
nmumber of numerical results, guided by which, in section 5 we develop asymptotie results
for large wavenumbers; throughout this section we emphasise a comparison hetween our
numerical and asymptotic results. In seetion 6 a new class of mode. which i1s found ro
develop at sufliciently large Mach munber is considered. Tn seetion 7 we present a rynber

of conclusions arising from this work.




2. The basic flow

Let us consider the solution corresponding to Batchelors™ (1964) similarity solution for a
swirling wake flow. equivalent to a far downstream limit (. > 1) of the governing equations.
We thus suppose that the solution comprises of a uniform (freestream) flow plas a relatively

small perturbation. 1.e.

no= l'; + 1. (2.1a)

Po= 1 {2.1h)

wo=u, (2.1¢)
lY* 2

P=-—5+p (2.1d)
Uy

T=1+T. (2.1¢)

/):1—+—/3. (21f)

The solution develops in much the same way as the incompressible case of Batchelor (1964)

and it 1s found to leading order that

R 1 C2U* log(rRex ) CeU: LU* ¢
= — EaR ( — =), S — 2.3
t [v: S,I‘I/;ZR(,)O 21(7]) + 8.1‘1/;(;21?(‘\/ ‘,)2(7}) 8.1'1/,’;2]?(,% ( )
== () (2.3)
CoRcZ
i= T () (2.4)
202U
where
:'A'"‘)R( ~
L 2.5
! 4r (2:2)
Qe LU 2
U: ol log(rRe~ ) + U (2.6)

Srvt *Re Sr1t *Re




and

Qi(ny)=¢"", (2.7a)
Q:(n) = ¢ "logy + ei(n) — 0.867] + 2c¢i(n). (2.7h)
Cy and L are constants and Re .. 1s the freestream Reyvnolds number defined by
*Ux1
R = Dm0, (2.8)
Hao

We also find that
- ciUx* {(1 — )2
) = ,
! Srvx *Ut* Re n

whilst the temperature perturbation is given by

-~ e A1, L D)MECE] 41 1,
T=c (—”(ZUEZHBJr(7 ) . [m((zo_-)ﬁ)

+20i(n) —2(1'(2;,)}. (2.9)

Srv2 ?Re

og? 1 2
o JRTCEI:
+ (—8(7 62 +160 62
8ot oe? (5-He 27F a2 !
+ kil (+mf(f/2)—8 —40 ~r2(_g‘——”' (£/272))d¢E

. P
+£2r%’ri(£2/2)) + : )(]f(lf]). (2.10)

1 . . .
where A and B are constants, £ = 25z, ¢i(z) and erf(z) are the exponential integral and
the error function, respectively. defined in the normal manner. and M is the freestream

Mach number defined by

U U
M, = x___ - Zx:)f (2.11)
(R*Tz): U;

Note that we expect M, > M. We also find it useful for the remainder of the paper to

define the lengthscale
1 r .

r=n?= —, (2.
s

(€%
fun—l
[§V]
—

where 1, = (4.r/Rr%)li is the characteristic radial lengthscale.

In the following section we consider the inviscid stability equations.




3. The stability equations

We take the general baste state tobe v = U(r), 0 = 00w = W(r). T = Ty(ri.p = polri.p =

po(r) and consider small amplitude perturbations to this flow: we write

u=U(r)+oF(r)E + O(6%). (3.1a)
r=0G(r)E 4+ O(8%). (3.1h)
w = W(r)+ oH(r)E 4+ O(6%). (3.1¢)
p=polr) + 63 MAP(r)E + O(6?). (3.1d)
T = To(r) + o7(r)E + O(82). (3.1¢)
p = polr) + oT(r)E + O(8%), (3.1f)

where., ¢ 0 1, and
E = expli(ar/re + 18 — act/r,)]. (3.1g)

The voverning stability equations. neglecting the effects of viscosity are then
2 g ) { 2 2 A

[y /);,((\F + G+ f— + g) + Gpy, = 0. (3.2)
poeF 4 poU'G = —a P, (3.3)
poy G+ /)“2”,"}] + FI:'Z = D', (3.4)
,,f.;H+,,(,(W'+%>G: —'—'I_E. (3.5)
porT + poGT(r) — (L:i>(*,;.\lzp +Gpy) = 0. (3.6)
)
S M*P =TT, + 7pa. (3.7)
where we have written
Fe ol —e)t ",‘_r (3.8)
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and primes denote differentiation with respeet to r. Note that (3.1), (3.2)  (3.7) all im-
plicitly assume that the axial scale for the perturbation quantities is considerably shorter
than any developmental lengthscale for the basie flow. as is the case if ry <« 1.

Equations (3.2) (3.7) may be combined to yield the following two. first order equa-

tions
dG _ [n(r”')"’—k arsl’ B £{_,_ B 1](1' i[(nzriﬁ— n?) B EAVE P (3.9)
dr ey YPo o1 o rey Ty
ap (WY e s —1 ), ]
A IR Bl SO SR S e | Lo Ve
ar — " [Y - ¥ ( Ty * 7 )/’(;Tu)
TR R Y A
_[__”,‘ L [P (3.10)
rép rTy

~ . .1 the

These equations are somewhat similar to those considered by Michalke (1
conrext of jet flows, if the swirl veloeity 1s neglected.
Let us now consider the specifie basic flow of the trailing line vortex. as diseussed in

the previous section. Equations (2.1), (2.3) - (2.5) may be substituted into (3.9). (3.10).

and then if we assume |6 < |‘; log r|, and using the fact that a simple rransformation and
inversion of the axial velocity only affects the frequeney of the stability analysis. and does
not change the amplification factor ¢; (where ¢ = ¢, + 7¢;) and noting that p. p and T are

atr order of O(log r) smaller than @, ¢ and w. then (3.9). (3.10) reduce to

dG _ [”(T‘V)’J+ aril”! - E}G N [M _ \P:\Izjl P. (3.11)
dr rey r rty

12,2y ol T2As?
ﬂ): {4—(”,, )JG_[.JIIH B 1 Af }P. (3.12)
dr " 722 ,

The boundary conditions to be applied are then
P0)=0.n#0. P0). n=0.
G(0)y=0, [n| #1: G"0). [n|=1.

and G(r). P(r) bounded as r — ~, (3.13)




and the basic low may be taken to be

2

U=¢T, (3.14)

S

w=21-c", (3.15)

o
where q 1s an order one (swirl) parameter, and we have effectively scaled velocities with
respect to U},

Equations (3.11), (3.12) may be combined to eliminate G. yielding the following

second -order equation for P.

9 T1 "2 a g2 172,21/ 172..2y/
Prr+Pr{“','W M +1_[9_(n ) )]/[¢_(It ) )}

re e r r r3 © r3 @

[ar?U" + n(rW)'] } + p{ [271“" W2Ar? ]'

7.29:, 7.29,; r

oMW W2AL? (W2r2y 7’ (W2p2y
a2 T ¥ - 3 ¥~ 3
rép T o rQ

N ( 1 [(,17'2 U' 4+ n(rW)] > [271”" W?2Ar? ]

r 7.299 7.25;, r
2,2 2 ) ”,'2 2\
_ [g_"_ _ *QMz] [*, _ L_T’_)} } 0. (3.16)
reg r \,9

Setting M = 0 clearly reduces (3.11), (3.12) and (3.16) to the incompressible problem, as
considered by Lessen et al. (1974), Duck & Foster (1980), Leibovich & Stewartson (1983)
and Duck (1986). It is also possible to be rather more precise regarding the behaviour of

the solution as r — oo; this takes the form

IG o

T a1 = M?)3G =0, (3.17)
dr

1P Y

(T +a{l = 2M?)iP =0, (3.18)
«or

. . oy 1 .
where positive signs are taken for R{(1 — ¢2A?)2} > 0, and vice versa, to ensure bound-

cdness as r — oc.




The “order one™ probLicm requires a fully numerical solution, which we consider in the
following section, prior to considering various asymptotic limits of this system of equations.

which permit a certain amount of analytical progress.




4. Numerical results

The system was treated numerically using four different techniques. The Hrst was based on
the method of Duck & Foster (1980). i which the syst m was approximated by second
order central differences. with conditions (3.17) and (3.18) imposed at a finite radial value
r = r.. . taken suthiciently large not to substantially affeet the result. The determinant of
tae ysiem was then foreed to zero by adjusting the complex wavespeed ¢ (using Newton
Jerstion).

The second method was based on a fourth order Runge Kutta scheme. conditions
(3.17) and (3.18) were approximated by imposing boundary condition: at a finite radial
value r = rya. where this value was again taken sufficiently large to not substantially
affeer the numerieal results. The computations were performed by shooting the solution
towards 1 = 0 and were not necessarily coufined to the real roaxiv. The value of ¢ was
adjusted (again using Newton iteration), to ensure the correet hehaviour of the solution
as ro— ().

The third method used was based on the first, but was a global fimte difference
method. Using the aforementioned finite difference scheme. then by defining two addi-
tional quantities 7 = ¢G. P = ¢P at cach grid point. it is possible to write the resulting

scheme in the form
(A — cB)x = (. (4.1)

\\'}l(‘l‘(‘

o~ -~

x = [{G). {P}. {G). {P)]". (4.2)

This scheme has the obvious advautage of generating 4.V cigenvalues (where NV is the num-
ber of grid points). simultancously. The principle disadvantages are (1) it is not possible to
use (3.17) or (3.18) beeanse of the nou linearity of e. and consequently Dirichlet houndary
conditions were applied instead at the onter edge of the computational domain: and (i1)
the scheme requires rapidly inereasing computational resources (both in storage and time)

as .V oincreases.

10




The fourth scheme implemented was a Chebyshev speetral collocation seheme. hased
on that of Khorrami. Ash & Mahik (1989). This was a global method. which generally
auve very aceurate elgenvalues, but also viclded a large munber of spurious cigenvalues,
feature found m many spectral schemes. The first (Hnte ditference) selieme was quick and
robust. hut hecause of 1ts “local”™ nature. mode jumping was often expericneed. due to the
frequent close proximaity of neighbouring modes, as discussed later i the paper. The seconed
(Runee Kutta) scheme was also quite fast. and had the advantage of heing able to compute
newtral and near neutral modes (and even stable modes) by contour indentation. but
again because 1t mvolved local searching was prone to mode jumping. The third seheme.
namely the global finite difference scheme which proved to bhe very robust, produced few,
if any spurious (i.e. non physical) modes, and generated many crgenvalues simultaneously
beeause of its global natnre. Consequently our results were generally computed using the
tirst scheme (if only a limited number of modes were required) or the third scheme if 1t
wias required to compnte many modes.

We now present a fow numerieal resnlis to give some mdication of the effects of
variation of certain of the important parameters. Here, and indeed i all our caleulations
we chiose 5 = 1.4, ¢ = 0.8, Further. we generally found that r,,,, = 3 was sutficient with
Ar = 0.03.

Fieures 1 a. b, ¢ show the variation of growth rate (ae,) with o for the case M = 3.
with n = — 1. -2, =3 respeetively. These results (and all those presented m this paper) are
accurate to within the graphical accuracey of the figures. Because of the ereat mualtiplicity
and close proximity of all these modes, we show the computed valnes of ae, at cach value
of a. From the outset it should be stated that all our results relate to negative valiues of
n:in general, we believe that instabilities are almost exelusively confined to this region of
paramncter space. with perhaps a fow minor exceptions. We certainly expeet the largest
growth rates to be confined to the negative values of 1 (this s also the case when the flow
1= 1ncompressible).

We sce i figures 1 the following general trends: (1) an inercase i erowth rites as - n

iereases: (1) an apparent cut oft value of o above which no nnstable modes exist: (i) a




tendency for the maximum growth rate to be attained at an inecreasing value of o as —n
15 inercased: (1v) many modes of instability.

In figures 2 a. b, o dl el growth rates for the case M =3 with n = —=1. -2, 3. —=4. -3
respectively are presented. The trends (1) (iv) deseribed above are again observed. to-
gether with the result that for corresponding n and a. the growth rates of M = 5 are
substantially reduced compared to M = 3. Further the upper limit of a of the instability
appears to be quite independent of M. and section 6 confirms this observation. Note that
i figures 1 and 2, the lower range of o has been deliberately truncated. In this limit. our
numerical results became extremely sensitive to grid size, and computation requircments
bhecame prolbitive.

These results suggest a number of interesting features, and in the following sections

we mount a systematic study for inercasing M. when (—n) > 1.

12




5. Asymptotic results, (—n) > 1
5.1 M=O(1)

It turns out that for this order of Mach number, to the orders to which we concern ourselves.
the solution (in particular for the complex wavespeed) remains unchanged from the —n > 1
solution of the incompressible case, as considered by Leibovich & Stewartson (1983) and
Duck (1986). However, since this solution forms a basis for the following subsections. we
outline, briefly, the form of the structure in this case; full details can be found in the

aforementioned papers. We have that
a =na, o =0(1), (5.1)

and the complex wavespeed develops as

€2

1 -
c=co+—+—x+... . (D.2)
n In|2
Then generally
2 =
p=npoter+ — ..., (5.3)
In|2
where
_ W(r) -
o = a(U(r) —co) + e (0.4)
However the solution is found to be concentrated about points r = rg (critical points)
where po(r = rp) = 0 and so
Wir
a(U(ro) — co) + o) _ . (5.5)
Ty
However, it turns out that ro must in fact also be a turning point., and so
Fh(re) = 0. (5.6)
1.¢
W .-
ol (ry) + (—) =0, (5.7)
r /o

13




(where a subseript zero here and hereafter denotes evaluation at » = ry). Equation (1.7)
then serves to determine rg. and henee ¢y may be determined from (5.5). The key length-

scale instde the eritical layver 1s given by

R:(r—ru)lul%. (5.8)
and then on this seale
¥ T i%%%ﬂ{—nr2+-%;ghmyR2}+()ur”). (5.9)
niz 2
where
Sl = . {0.10)
;“(H))::’x:[;u(rﬂr:rw (5.11)

For consisteney it was shown by Leibovich & Stewartson (1983) and Duck (1986} that

L arsn e a2ty .
7 = - — T 5 J.12
' ria? (1 4+ a?riiréa?
Farther, on the R = O(1) seale the eigenfunetions seale as
P=PrP+. ... (5.13a)
G=nG+... . (5.13h)
and then P{R) is deseribed by
. . MO VR sier 1 22y
Drn - {2[‘_- _ \rniln) sign( ) 2+ 0 ,“)}RJ:IQ.)
1 200 rh
or
o 1. A - .
Pf.:—{-52+~”u,} -0 (010)
I 2(A1)?




. Ly .
where we have written € = 22 A\ R, with

2. 1+ a%rd —Xognlr
Ao = ——s1g11(n)(—-%i) and A = —ML) (5.16)
Cy r 2a

Equation (5.13) has a solution which may be written in terms of Weber parabolic evlinder
functions, D,,(€). and so if we demand the solution decays as |€] — oo, then o must be

an integer. vielding the following result for ¢;:

1
A )2 -
('zz—ﬁ—l)-—(l-k‘.?m). m=0,1.2.... (5.17)
Ao
Figure 3 shows the variation of growth rates for M = 3. for n = —1 (the least unstable
mode shown) ap to n = =10 (the most unstable mode shown) as computed for the full

system: in all cases the most unstable mode for cach value of » is shown. Using the
asymptotic results above, we show the corresponding results in figure 4 (in particular we
set = 01n (5.17)). The comparison between figures 3 and 4 reveals good agreement in
the growth rates at larger values of —n, although at smaller values of —n. comparison is
less good than the comparison of incompressible numerical and asymptotic results, This
less satisfactory agreement may be attributed directly to the effects of compressibility. hut
for [n| sufficiently large, the asymptotic results presented in this sub seetion are ultimately
approached.

In the following sub-section we begin to incorporate compressibility into our asvinp-

totic deseription.

5.2 M=0O(|n|3)

The key equation (5.14) was obtained by taking the O( |n|§ ) terms in equation (3.16).
If || > 1, and we now permit M to grow in magnitude, additional terms will ultimately

enter (5.14) when

M=nsM,  M=0(1) (:

Cr
p—
0/7]




when the coeflicient of P will include the effects of compressibility. The modified equation

is then

r(,)Rz] (1+a%rd)
2

"

— . cy o)
Pgrpr — mgn(n){?[——— - .
”
0

(
o 2a¢

P ) 4+ ardUSy (WEM*\ \

+[( )f’ h 0 0]( 0 )}P:(). (5.19)
Gy 7'0 ro

All other quantities (specifically ¢y and ;) remain unchanged from those evaluated previ-

ously. This equation may be transformed to the same form as (5.15). viz

1

P - {16+ (2t 2N p
: I

P=0. (5.20)
2(A1)?

where Ay and Ay are given by (5.16). whilst

W)y +ardly | ( WEAL )

A, = sign(n) — : (5.21)
7 0(‘1 o
Consequently, using our previous arguments
1
A)V2(1 4 2m) + X -
('2:—{( 1) 3 ) 2}. m=10,1.2,... (5.22))
0

Figure 5 shows a comparison of “exact™ growth rates (obtained using the numerical ap-
proach of section 4), shown as a broken line, with the asymptotic results of this subsection:
here. the chosen values of n are -5, -10 and -15 and we set M = |n|% i.c. M =1 in cach
case. The agreement is satisfactory, and improves as n increases. Figure 6 shows the

corresponding comparison for ¢, in this case the agreement is excellent.

5.3 M=O(|n|?)

As M (and hence M) increase in magnitude, the “A; component™ of ¢, increases (as
M7 ) and becomes sufficiently larger than “)\; component™. Simultaneously. the coeflicient
of P, in (3.16) will grow, and further terms in the coeficient of P will become significant.

The next important regime for M is when

—-

M =n|* M, M =0(1). (5.23)

16




Although the key radial scale remains R = O(1) (see (5.8)). the series development of ¢

and p(R) 1s now altered, and is mstead

cy ) 3 -
C=cp e — (5.24)
n |7)|3 Inl?

and therefore.

2 3
Fy=¥v1+ —x +

nli o |nlz

+ ...

1

1
14

= —ac] — acysign(n)

[o8]
[RV]
cr

_+..

Q:{(T())Rz}"{" . (

N =

{—ncr;sig;n(n) +

Il

. ) . 7 . . .
Considering O(|n]3) quantities in (3.16) requires that the sum of these terms 1s zero, and

<o this leads to.

cy = —sign(n)

AW [(rw’); + m'gU{)}

2ary 1+ (izrg

The equation for P(R) is again obtained by taking the O(|n|§) terms in (3.16). namely

— A2 14+ a2 7o 29y — o
Prr— - OPR—{*Z——H—PIQ-FQ—;]}P:O. (9.27)
o To ¥1 ¥1
Using the standard transformation
~ . 1 M2WER
P(R)=P (R)(‘xp[——— 0 ], (5.28)
2 Tn
then
— ‘ . "o YR2N /1 2.2
pRR'— {2 Slgn(n)((—z—— v()‘g7”) )( +(.; ,0)
) 200y re
MEWE\ 2y s
+H(50) }P — 0. (5.29)
4N
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or

N DS BRI S N o 5.30
Pee— |1+ 50 0 (5.30)
where
]
27'()

Sinee 5.30) 18 again a form of Weber's equation. then
L
{(/\1 P+ 2m) + Ny }

mo=0.1.2.... 10.32)
Ao

Fieure 7 shows a comparison of asymptotic results (solid lines) with numerical results
. - - . O ~ . )

(broken hne). for n =-5. -10. -15 with M = |nl= (i.e. M = 1), Again the comparison

becomes markedly better as [nf inereases. The corresponrding distribution of ¢, 15 again

e¢ood. and shown i figure 8.

5.4 M=0O(|n|z)

In this case it is quite elear from the previous subsection that when M = O(]n|%). then the

¢y term (see (3.26)). which grows as M4 will become comparable in magnitude to the term
involving o) (which is independent of AN): in addition to this. sinee ¢y grows as M1 as A
. . . 1

inercases, then this term will also become comparable to the ¢ term when M = O(|n|7).

In this case. it is straightforward to show that R = O(1) remains the appropriate radial

scales whilst the wavespeed expands as follows

"y 9

"-"()'J,—'—‘f—*' :,+.... (:)33)
n ’;)15
implving
s =L e (5.34)
ik
If we write
M= n|EM. M = O(1), (5.35)

—
V4]




then the equation for P(R) is

_ .I")’ .;’('/ 21 “7»_:”.‘_;
Prp - {l"}%’ {(L'—”LS—U)( N T ‘l>
oyl Iyl Iy

AR

ey
+ [_->(<_"_‘D(|i*"fil'£)‘ig
) "f;;l rl
pejntn (L Eorilhy (I y 2
TR I'n 1
1+".’._’ ”".'..’I AT e
w2 ﬁ,‘L“)(L.,’ ’“)*-J}p = 0. (5.36)
"o "o ¥
Agam using a standard transformation of the form
- - 1nfi MEWER
P(]?):P(R)vxp{suik—*‘—“—}. {(9.37)
2z 'y
leads to the differential equation
- TN+ ardlhy 21 AV
PRI{—'— {lnl%{:<(, )()2+ (},U ())( . 0 *‘.\'igll(”) ())
e TR v
1+ a2 (1722 AR
e [ e R e
Fa¥1 Tov =r'o
+ [;)(“”v)n’» +argl} )2 2
ey v
+sign n)(("”')f»f argUy ) (JI"W;’) £
oYl 7o 1
202 LNV vy
+?‘<]‘+")” 0 (I‘\)’ )(] Y"j(}P :() (538)
T TR ¥l

If onr assumption regarding the mmportance of the R

O(1) seale 15 to be consistent.
. 1 [ . .
(although sce the comments below regarding B = O(|n]+)) then the coctlicient involving
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) . . . . .
[n]7 above, must be zero. (This 1s also consistent with the previous smaller orders of Mack

munber considered previously). This leads to

IR ((,-u')(, + (17-5("')) . (,\TZIt]f)z(W—’rr HECTR
2arg 1+ a?rf 2ard /14t ( _
('1 - — . ‘-)3())
1 AV AR AN
1 __ ( 0
+ 1+ ar; 2 )

where ' denotes the incompressible value of ¢y, given by (5.12). The equation that

determines P(R) 1s then.

(2 - i(r—”)ﬁ)sign(n)[

e 20y

—*
PRR - {2 y

1+(.s2r('-; N (‘\7![11;2)_'

I() 27'”

+.\'ign(n)»-.) r =0. (H.40)

2y

NAVE ((rU')", + (.,-;Z,L'(,)] }_,

2o
roac
or svibolically

Ti;flf — {:\]R'z + /A\()('z]‘j)—* = 0 (541)

and using previous arguments. we must have

A )2 2
o :‘_'——( I) (}+ ,”) 7”:0.1.2... . (;'
Ao

ot
NN
[

Note that althongh the transformation (5.37) suggests growth as B — oc. this 1s more than
offset by the decay of the parabolie eyvlinder functions. albeit on a larger lengthseale R =
o]l |n|% ). Note too that the transformation (5.37) is consistent with that used previously.
namely (5.28).

Figure 9 shows comparison between the above asymptotic results (solid line) and the
“exact” numerical results (broken line). for the most unstable growth rates when n = -5,
10,15 (M = |n]z. ie M =1 in all cases). Again the agreement 1s seen to mmprove as
— 1 increases. Figure 10 shows a comparison between the corresponding ¢, s, for the above

cases and indicates good agreement between our asymptotic and numerical results.
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It turns out, however. that this order of M marks a watershed. When M is not
large. both roots of ¢ must be complex (and from our previous discussions. the flow is
unstable). As M increases. however, eventually terms inside the square root term in (5.39)
will eventually become positive. and henee the two roots of ¢y will ccase to bhe complex
conjugate pairs. but will both become real. In particular. this will oceur when
L (5.43)

!
2
)]

MEOVE (W)
20t 1+ a4
To illustrate the stabilisation of these modes. in figures 11 a. b ¢, we show the variation
of the growth rates with M for the cases n = =5 and o = 2.5. n = =10 and o = J.
n = —15 and a = 7.5 respectively. We clearly see these modes becoming neutrally stable
at finite values of M. For comparison, in figures 12a- 12¢ (corresponding to figures 11a
11c respectively) we show the corresponding results from solutions of the full system (3.11).
(3.12). At the lower values of M. there is good correlation between the two sets of results.
However. as the Mach number inereases. and as the order of the modes (1.c. ) inereases.
the correlation deteriorates. We consider this latter point first by examining the behaviour

of the higher order modes.

5.5 The structure when m =O(|n|z) . (M=O(|n|z))

One detail that has not been considered so far. is the behaviour of the modes as i inereases.
This feature was considered by Duck (1986). and we consider this aspect here. for the
important case when M = O([n|z). ¢ develops in the same manner as in the previous

sub section, and close to the critical layer ¢ takes the form

1 -

[re]2

¢y remains unchanged from that given previously. however ¢ will differ. In this case, we

consider the lengthscale

R=(r =)l = 0(1). (5.45)




and so on this scale

N

signin)

F1 = —aer + = (o R (5.46)
Sign(”) " 3 - 4=
F2 = —acy + —TY"“ (ro VR {0.47)

Substitution of these expansions into our governing equation gives, to leading order, an

cigenfunction equation of the form

Prip+a(B) Py + [ ]g(R)P = 0. (5.48)

Using the standard transformation
- Lo~ 1 J )

P(Ry=1DP (R)(.I‘])[—S/ql(R)(]R}. (5.49)

we obtain
* ]‘ 1 2 * - -

Pﬁﬁ + [In|(12 - 5(111? - E’II]P =0. (5.50)
However. since |n| is large, (5.50) may be approximated by

Pl?l? + |nlg. P* =0, (5.51)
where

T2 = 775 2 4rg Wy + (14 a?r)(rovt — (W2r2))

To¥
, ) 2 MWl
~sign(n)2WErdd e + —i"’# (3.52)

Thus (5.50) may be written as

pr o+ | —L LD ) (5.53)

¢ (1+6) (1462




with

2drg g — (1 4+ or3)(W4r? ) ]sign(n) -
jt= T . (D.54)
acyrigg(ro)

=2[(1 + (\27'5) + .ﬁb“n‘}f/él](u'lsign(n) _
V= ,2 1y .. + (0.0o
rovoelroe)

ot

SMERTE )

N = — . {5.06)
oo (ro)
1
~ —20 (ro )signfn) 2 o
€ = 5 R. (5.57)
200
h? = |n|. (5.58)

-

Equation (5.533) 1s now in a form suitable for a WKB.J type of approximation. This equation
has four turning points, however for the range of € required that we need consider only

the turning points at

For large h the WKBJ solution is given by
P = (]_% [A] vxp/(ih(]%df) + A, (‘Xp/—(ih(ﬁd{)} . (5.60)

where

2

- __"T_ _, (5.61)
(14627 (1+€) '

-

The treatment near the turning points is standard (see for example Duck 1986) and leads

to the following dispersion relationship for ¢;

Ct
D
(B

Ih:—gﬂ+%m,1n:0LZ”. (5.




where

H 1 T " .
_;<m>n(5( ’L> : (5.63)

vl

- 1. 1 [t 4
£ = -_)_/ ;\/Lﬁ_/* (5.64)
14 Z | 1/
1 5 63)
TR 000
1 .
g1 = . (5.66)
q-
1 3
A :41<—2%+5!11—1> (5.67)
—~) _’2]\’2
Y- (0.6%)

Hereo F(Z k). E(F.0k). TI(5.a% k) denote complete elliptic integrals of the first. second
and third kinds respeetively.

The system (5.62) was solved using Newton iteration. and results for variations of
growth rate with M were computed for m = 0.1.2.3.4.5 for the cases n = =5.a = 2.5
(igure 13a), n — 10.a = 5 (figure 13b), n = —15.a = 7.5 (figure 13¢). The moditied
theory of this subsection does indicate some important improvement i the comparison
with figures 12: in particular the “bunching up”™ of the modes with an inerease in order is
captured. However, althoush for n = —15 there is quite good correlation for the lower order
modes, as moinereases, the various wiggles observed in figures 12 are not deseribed, and

wore importantly our asymptotic resalts do not capture the instaoility shown in figures 12
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bevond about M = 8. Indeed. figure 12 indicates instability as M inereases. We therefore
conclude that the nature of these modes. as M — x is somewhat different. It turns out
from the analysis of the following section that as M — oo, a further class of mode emerges.

quite distinet from those considered so far.




6. Centre Modes, M=0O(|n|)

Here we examine modes exhibited when the Mach number 1s of order 1. i.e.

M = |n|M. M = 0O(1). (6.1)

As noted previously, as M — oo, the features of the modes exhibited at lower Mach
numbers cease to exist. In fact the analysis of sub section 5.5 suggests that the modes
in this regime under present consideration are neutral. However, our numeries helie this
and point towards the existence of centre modes, by which we mean, the eigenvalues are
determined primarily by conditions close to the axis of the vortex, r = 0. 11 a manner
similar to that of Stewartson and Brown (1984. 1985). Here. the complex wavespeed

develops as
(@] 5
(':('()+—2+... . (6._)
n
(an expansion that can be verified a posterior?) and therefore

¥ 1
\;:II\;”—‘}’—_‘*“...
n

= n{n((' — )+ I—:—} + {-n('l + ‘—1—\;:,'(0)7'2} + ... (6.3)

2n

In order to be consistent we must have that @o(r = 0) = 0. 1.0,

q
cp =14+ —. (6.4)

(2}

We must now go on to find ¢; in our complex wavespeed expansion. The solutions are,
in the main, trapped in the region around » = 0. but we begin by showing how these
solutions are connected to the outer How. The low 1s divided into the four regions. which
arc considered i turn.

We first begin our analysis at the outer region of the flow, where r = O(1). and the

governing equation has the form

, W o
Do — |n)*——D, + [n["l[z,:f)]’ = 0. (6.5)
,
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Using a transformation of the form

r 'ZI,.V? ﬁz
P = P*(r)exp / ”—o;dr' . (6.6)
7.'0 =r
and writing
—~ . I’V4H4 -
Ao = —AIZ\;(Z)—*‘T (64)
reduces (6.9) to
P’ — [n|'\oP* = 0. (6.8)

We define the critical point 7y by \o(7p) = 0 and when r > rg. o < 0 and the approximate

solution to (6.8) is given by

E,
P = (‘\p 1|n|1/ [—\o] ?(h} (6.9)
[_\0]

where Fy 1s an unknown constant.

We have also assumed that [~\0]]5 15 slightly imaginary, with its imaginary part
positive. This condition is to ensure that the solution is bounded as r — . otherwise if
Im{[—\(,]%} < 0 we replace 2" by "=/ in (6.9). Looking at this point from a more physical
perspective, we require waves to propagate out from the eritical layer and not in toward
it.

In order to be able to mateh (6.9) with the solution in the r < 7y region. we must first
examine the solution of the flow in the transition layver. around r = 7y. The lengthseale 1n

this region turns out to be
1'—77021?]71]_%. ﬁ:O(l). (6.10)

and use of this scaling reduces our governing equation to the Airy equation, which has

solutions of the form

P* = FyAI(\L(70)) 3 R) + FuBi(\} (0 )7 R). (6.11)




Standard analysis and matching with (6.9) vields the result

Fy =.F,.
In the region » < #y. \y > 0 and henee the WKBJ solution here is given by
1
1 SRRtV —2 )7
P = —I_{Dl (‘xp{/ |n|“{ R M ,:f,} (lr}
-} r_‘o

Yo
R £ A Y A
+D, vxp{— / [ | [ R A \;(,}

v Tg

[FEN
=
=
\q;_d
N— —

As we approach the transition layer this solution must mateh with (6.11) implying
D, = —iD,V3.

Note that as r — 0

N

2

P~ —
gMrs

4 4

[SIEd

X ST 21
{D,Z, “Xl’(q—L‘['—I'—) +D,Z, (‘_\:p(—q—?“h)l)}‘

where.

We now consider the lengthseale, » = () |n]‘% ). by setting

ro= r|n[% = O(1).

The governing equation in this region. to leading order, is given by

23 1 P o

4

P, - ]7;[(12.—\727']7,» + |n|?

*1

[ (]
0

(6.13)

(6.14)

(6.18)

(6.19)




where

1 .
21 = 590002, (6.20)

and as previously, 1t is necessary to use a transformation, which is of the standard type.

1€
* ok 1 237 1.-
P=P oxp{; [7lq 7']\1(17'}. (6.21)

which leads to the final form of the governing equation in this region. viz

.| 20 1 ¢l
P 4 |nf? T s q,, i 5= \p~=o (6.22)
zwo(0)% 7 4
This equations yields solutions of the form
e L (12H2|n|7‘2 . (12H2|71|r"2
P** =72 C;I,,(—4—)+C21\,,(——4——) . (6.23)

where I and Iy are modified Bessel functions. written in standard form. with

, 23" \ 4
v = |_"-|(1 - ,q—”]\-—) i (6.24)
2 3%0(0)

Now, as 1 — 00

- Cyr2 qzﬂzlnlr2
S R
\/27rq2f\_12|n|7"2/4

2372, 1,2
-{—C?_rli —27r (‘X})(—M—>. (6.23)
2¢2 M " |n|r? /4 4

and comparing this with equation (6.15), we see that in order for these solutions to mateh

and taking into account equation (6.14), then

Cv| = —in\/gZizCz. (626)




Also. we take note of the fact that as r — 0. then

| C'l(%dlfz)” C, 1, ,\ "
s (1 270 7 2 Y 9=
P 7 ( T+ 1) + QF(I)(zﬂl ) ) (6.27)

where 3 = ¢?M7|n|/4 and T'(r) is the gamma function. defined in the standard fashion.

Next we set

R =rn| = 0O(1). (6.

[]
N

and in this regime » develops as

with the governing equation

S0 dalqt4d 231" 1
Prr + I”Ih[ . (11 +II - 212 (11 1" 51 2 P =0. (6.30)
[—acr + gg()(O)Rz]~ [—aey + E;(,(O)R“] -
which has the solution
Sl
(YR*)=*a )
P=———F(x:x7y: 1. TR*). 6.31
TS AT ) (6:31)
where, F is the hypergeometrie funetion in standard notation. and
1 .
=20 (0
= 2200 (6.32a)
acy
1 . .
=) = s(ln|—.~')—/1. (6.32h)
1 .
2 = 3(|n|+.~»’)—/1, (6.32¢)
s = (|n]* + b3, (6.32d)
Y
e+ 1) = —%—. (6.32¢)

30




with

dgqa + 4(1202

; 7 16.330)
1 (#0(0))

a = ‘n|2

_4(13|n|2j\7
T

Fu(0

[N

h= (6.33h)
Note that this equation is very similar in form ro that found by Stewartson & Capell
(1985). Thix solntion 1s of course finite at B = 0 by the definition of the hypergeometrie
funection. and therefore satisties our boundary conditions at the centre of the vortex, As

R hecomes large

-

P~R:(A4 /R +A,R77). (6.34)

matching this with (6.27) and making use of (6.26) we see that.,

K

C(s/2 + Dlis/2)n
(302}

4, = =712V, (6.35)

which gives us a relationship between 4 and 4,. We now go on to determine ¢ explieitly.,
We hegin, by writing P, as B — o, in terms of its asymptotic expansion in this

limnit. 1.c.

(YR +3

-2l SRR CT
P~ ml— wli=TR Y™ -Zl + d(-T R AZ'_) . (G.36)
where,
s = 1)
A e : (6.37a)
(l—”—‘+i— 1—1)'<M+i+‘,)t
2 "o/ 5 st
—=s— 1)
fo = , = = : (6.37h)

N
[v(:
|

| =
|
~—
|
ek
N——’
~~~
\J{:
i
IV
.+_
-~
=
~—

2

31




and Y, and Y, are both power series expansions in 1/ R*. with their leading order terms

untty. Matching the two large R solutions, (6.34) and (6.36) viclds the relationship.,

A| S .
e = (6.33)
.’1; (\(]
However, sinee [s| 3 0 then | YY) 3> 00 which in turn implies that (o] 3 |éo[. and therefore
to leading order. «, = 0. Henee, we see that, L([n] 4+ 5) — /i must be either a negative

mteger or Zero., 1.e.
i 1 . .
Jy = S(]n)—%s)ﬁ}-‘\. (N >0). {6.39)

for integer V. where g1y denotes a first order approximation to ji.
Sinee s 1s imaginary. the above expression substituted into (6.32¢) and (6.32a) gives
the leading order imaginary contribution to ;. i.e. it 1s obtained from

”03“”

_———. (6.40)
Savpigljon + 1)

oy =
[t is also possible to obtain the correction to this term by retaining the next order approx-

imation to g, On setting. 1 = fig + Agi. where | Al < 1. then we obtain

DM RN s - 1) |
N T T G (6.41a)

_ (—-_—1)‘\'[7)|!(s7+ Ny

" xy 5,411
I ~“!(|7" +‘\,)! (O »)
and then (6.38) gives
- A, _J(sH ]+ N s+ N
S == (=1 : 6.42
e ST N (e ) (6.52)
Si“"(’
Lar(o
jplpr + 1) = *L”Y—”( ) (6.43)
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and therefore, if we allow 1=y + Ajin the above, we see that

200 24+ 1) ,
- (IR PR EUES TR | 6
Qagiglpn + 1) Yy g -+ 1)

Therefore. we may now write ¢ as

~

ayy(0) A, “ AR TS T IO W I W
] =~ —/————— - =) e o e T R
Sapalpg 4+ 1) Ao Udpatpo + 11 ) Stes = TN o N

(240 -+ 1)

| (640
Lot +
where, all variables iu this expression have been previously defined. However. the correction
term 1s found to be of several orders of magnitude smaller than the leadine order term of
cp.
In figure 14a we show the variation of the growth rate with o for the casen = - 50 M -
5. This figure 1s to be compared with figure 2¢. computed from the fall systeme: comparison
between the asymptotic and fully numerieal resulr= is surprisingly 2ood. considerine the
smallness of —p and M. Figures 14h shows the erowth rate variation. predicted from the
analysis of this subsection, for the case n = —10. M = 10 and is to be compared with the
fully munerical results shown in Hgure 15, Agaiu, the results are encouraging, 1n partienlar
the magnitude and location of the maximum growth rate is quite accurately predicted.
Unfortunately, our attempts at a numerical solution of (3.11). (3.12) with a reasonable
mumber of grid points for the case = —15. M 15 proved unsueccessful, due to a large
wunber of spurious (1.e. highly erid dependent) modes. Indeed. it was fonnd that as M
was nereased, our numerical scheme often failed abruptly, with o sudden generation of
large numbers of spurious modes.
Referring again to figures 14, we see that the npper nentral point is elearly <cen. This
oceurs at o = —n/q. the point at which a = 0 (sce (6.33)). The fully numerieal results
thronghout this paper all very clearly show this result. whiclh appears to apply universally.

as in the meotmpressible case,




Additionally figures 14 show a distinet lower neatral point. This corresponds to the
value of o where S(0) = 0 namely o = —¢/2. At this location. ¢ and b (detined by
(6.331) both exhibit a singularity. There is some correlation with these results and those
of the fully munerical scheme.  Indeed. it 15 most remarkable that the location of this
lower neutral point 1s identical with that found i the mecompressible case (Stewartson &
Lethovieh 1987)0 and that both the upper and lower nentral points are captured by (6.45).

It 15 also worth noting that there is some similarity hetween the structure of these
modes, and those found in the incompressible work of Stewartson & Brown (1985). al-
thoueh the partienlar details are different. and in our case analytic /asymptotic solution on
the 1 = O(1) seale is possible (see 6.6). whilst Stewartson & Brown (1985) ha:d to resort
to o munerical approach for this scale.

11 the following subsection we go on to draw a nummber of conclusions from our study.
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7. Conclusions

We have mounted a systematic study of the inviseid stability of the trailing lne
vortex. starting at zero Mach number A1, and progressively inereasing M. We see a general
reduction i growth rates as M oincreases. and indeed the results of subseetions 5.4 and

7). specifically

5.0 predict that the original family of modes will stabilise when M = O(|n
when (5.43) is satisfied. However it is shown in section 6 that when M = O(jn]). a centre
mode class of instability is formed. We feel that although our numerical results (figures
12 in particnlar) indicate that these modes spring from the higher order modes at lower
Mach numbers, as —n inereases these centre modes modes may well become distinet from
the original class of modes that exist at lower Mach numbers.

A further important feature of note. and one that is observed in incompressible work
(Leibovieh & Stewartson 1983, Stewartson & Brown 1985) is that there is a good deal of
numerical evidence to suggest that there exist no instabilities for o > —n/q. Indeed. this
is also confirmed by (6.45), noting that « is given by (6.33). This aspeet is currently under

further investigation.
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Figure la Variation of growth rate with o, n = -1, M = 3.
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Figure 1¢ Variation of growth rate with a,n = -3, M = 3.
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Figure 2a Variation of growth rate with a, n = -1, M = 5.
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Figure 2c Variation of growth rate with a, n = -3, M =5.
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Figure 13b Variation of growth rate with M using section 5.5 results, n = —10, a = 5,

first 6 modes.
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Figure 13c Variation of growth rate with M using section 5.5 results, n = —15, a = 7.5,

first 6 modes.
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